

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 8733-8735

Confirmation and prevention of halogen exchange: practical and highly efficient one-pot synthesis of dibromo- and dichloropyridazinones

Ji Zhang,* Howard E. Morton and Jianguo Ji

Process Research Department, Abbott Laboratories, 1401 Sheridan Road, North Chicago, IL 60064, USA

Received 19 September 2006; revised 29 September 2006; accepted 2 October 2006 Available online 20 October 2006

Abstract—Commercially available anilines were converted by a two step, one-pot process to the corresponding pyridazinones in good to excellent yields. During the process research, a significant halogen exchange was confirmed and prevented which allowed the process to be scaled to multikilogram quantities. © 2006 Elsevier Ltd. All rights reserved.

Substituted pyridazinones are useful compounds with a broad array of biological activities.¹ They have been utilized as herbicides, such as Norflurazon and as insecticides, like Pyridaben for crop protection.² In drug discovery, pyridainones were identified as selective COX-2 inhibitors (ABT-963³ and CK-126⁴) and as cardiotonic agents⁵ and α_4 integrin receptor antagonists⁶ (Fig. 1). Consequently, 4.5-dihalo-3(2H)pyridazinones 1 and 2 are valuable and versatile building blocks⁷ for access to these targets and mono- or poly-cyclic pyridazinones because both Cl and Br atoms at the 4- and 5positions can be easily substituted by a wide variety of N-, O- and C-nucleophiles, allowing introduction of different side chains regioselectively. In addition, 1 and 2 are electron deficient halogenated heterocycles, and they have been successfully applied in palladium catalyzed C-C coupling reactions, such as the Heck, Suzuki and Sonogashira cross-coupling reactions.⁸ However, the synthesis of these versatile intermediates has not been previously reported from the commercially available and cheap mucohalic acid precursors, and substituted anilines in a one-pot version.⁹ Herein, we report the first practical syntheses of 1 and 2 where the corresponding hydrazine is not commercially available.

Figure 1. Some important substituted pyridazinone compounds.

During our process research on ABT-963, a selective COX-2 inhibitor, we required an efficient approach to prepare multikilogram quantities of dibromopyridazinone **6**. The early approach to **6** was via a two step process (Scheme 1). A suitably substituted aniline is diazotized with NaNO₂/HCl and reduced by excess SnCl₂ (3 equiv) to the corresponding hydrazine **4**, isolated and subsequently reacted with mucobromic acid in acetic acid to give **6** in 43% overall yield. This process has several issues: (a) Sn species were precipitated when sodium hydroxide solution was used to neutralize the excess HCl to liberate hydrazine **4**. (b) Serious emulsion

Keywords: Pyridazinone; Halogen exchange; Mucohalic acid; Mucochloric acid; Mucobromic acid; Water; One-pot process.

^{*}Corresponding author at present address: Research API, Pfizer Global Research and Development, Ann Arbor Laboratories, Pfizer, Inc., USA. Tel.: +1 734 6223940; fax: +1 734 6223294; e-mail: ji.zhang@pfizer.com

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.10.009

Scheme 1. The original approach to dibromopyridazinone 6.

occurred when 4 was extracted with organic solvent. (c) The crude hydrazine 4 is brown in color and unstable to storage, making it difficult to determine the amount of mucobromic acid to use in the next step. Finally when a larger amount of SnCl₂ was used, it was not easy to stir well during the reaction. Accordingly, initial improvements were realized by reducing the amount of SnCl₂ from 3 equiv to 2 equiv, and, instead of isolation of 4, the HCl salt of 4 was separated and used directly in the next step to make dibromopyridazinone 6. Thus, the overall yield increased from 43% to 58%, and the product 6 was obtained as a light yellow solid with good purity (>90%). Although the extraction and emulsion were avoided and the yield was improved, it was found that the 4 HCl salt is soluble in water, resulting in yield loss when 4·HCl salt was isolated.

Mucobromic acid and mucochloric acid are soluble in hot HCl solution, while the final dibromopyridazinone **6** has poor solubility in water, therefore, we anticipated the separation of the final products **6** and **8** from excess starting material, mucohalic acid, would be very simple. Thus, we studied the possibility of using a telescoped one-pot process:¹⁰ After **4**·HCl salt formation was completed, *without adding acetic acid as solvent*, 1 equiv of mucobromic acid was added directly, and the reaction was heated to 80–90 °C. The product **6** precipitated during the reaction. After 2 h of heating, the reaction mixture was cooled to room temperature, and the dibromide was isolated in moderate yield (between 65% and 73%),

Scheme 2. One-pot process to dibromide and dichloride.

unfortunately it also generated a new compound (average 8–15% in HPLC area at 215 nm) which proved prohibitively difficult to remove by recrystallization. Surprisingly, under similar conditions, 4,5-dichloro-3(2H)pyridazinones **8** were produced in excellent yield (85% and 90%) and high purity (96% HPLC area), without the corresponding side product! (Scheme 2).

The analysis of crude product **6** via LC/MS gave an unexpected peak at m/z = 321 and 323. This indicated that the side product was from halogen exchange.¹¹ A further stepwise investigation suggested that the halogen exchange happens at higher temperature, or in the final step. To further prove this, a pure bromide **11** was treated with 6 N HCl for 2 h in HOAc (reflux), and indeed it gave a molecule at m/z = 285 and 287, corresponding to a single chlorine–bromine exchange and a purity reduction from 99% to 77% (Scheme 3).

Finally, we decided to use HBr/NaNO₂ for diazotization, SnCl₂/HBr for the reduction step and water as the sole solvent for the whole process. After these changes, **6** was isolated in 82% with excellent chemical purity (96%). Without further purification, **6** was used directly for the next step. This one-pot process has been successfully scaled up to make 22.0 kg of bromide **6** and utilized in the ABT-963 multikilogram synthesis.

It became clear that to prepare bromide, HBr/water must be used as solvent and, to prepare the chloride, HCl/water must be used as solvent.¹² The generality of this one-pot approach was then tested (Table 1). Several dibromides and dichlorides were prepared in high yield with high purity (>95%). If the aromatic ring contained an electron donating group, the yield was lower (entries 4 and 9), mostly likely due to the lower stability of the diazonium salt and the side reaction (denitrogenation); if the aromatic ring contained electron-withdrawing groups, the yield was higher (entries 3 and 8).

In summary, we have developed a simple, highly efficient one-pot process for preparing 4,5-dihalo-3(2H)pyridazinones. Halogen exchange during the process was confirmed and was prevented by careful choice of reagents.

Scheme 3. Confirmation of halogen exchange.

Table 1. Results of one-pot process to dibromo- and dichloropyrodazinones

Using HBr with mucobromic acid 5 X=Br Using HCl if mucochloric acid was used 7 X=CI

Entry	R ₁	R_2	Х	Isolated yield (%) ^a
1	F	Cl	Cl	87
2	Н	CF ₃	Cl	74
3	F	F	Cl	90
4	OMe	Н	Cl	35
5	Н	Н	Cl	88
6	F	F	Br	82
7	Н	Н	Br	78
8	Н	CF_3	Br	85
9	OMe	Н	Br	34
10	F	Cl	Br	86

^a The reaction was carried out using 1 (1.0 equiv), NaNO₂ (1.05 equiv), SnCl₂ (2.0 equiv) and mucobromic acid or mucochloric acid (1.0 equiv). HX (X = Cl or Br)/water as solvent.

Acknowledgement

We thank Dr. Jeremy Starr for proofreading of this manuscript.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2006.10.009.

References and notes

1. (a) Colletti, S.; Frie, J. L.; Dixon, E. C.; Singh, S. B.; Choi, B. K.; Scapin, G.; Fitzgerals, C. E.; Kumar, S.; Nichols, E. A.; O'Keefe, S. J.; O'Neill, E. A.; Porter, G.; Samuel, K.; Schmatz, D. M.; Schwartz, C. D.; Shoop, W. L.; Thompson, C. M.; Thompson, J. E.; Wang, R.; Woods, A.; Zaller, D. M.; Doherty, J. B. J. Med. Chem. 2003, 46, 349-352; (b) Giovannoni, M. P.; Vergelli, C.; Ghelardini, C.; Galeotti, N.; Bartolini, A.; Piaz, V. D. J. Med. Chem.

2003. 46. 1055–1059: (c) Van der Mev. M.: Bommelé. K. M.; Boss, H.; Hatzelmann, A.; Slingerland, M. V.; Sterk, G. J.; Timmerman, H. J. Med. Chem. 2003, 46, 2008-2016; (d) Costantino, L.; Rastelli, G.; Gamberini, C.; Giovannoni, M. P.; Piaz, V. D.; Vianello, P.; Barlocco, D. J. Med. Chem. 1999, 42, 1894-1900; (e) Piaz, V. D.; Giovannoni, M. P.; Castellana, C. J. Med. Chem. 1997, 40, 1417-1421; (f) Costantino, L.; Rastelli, G.; Vescovini, K.; Gignarella, G.; Vianello, P.; Corso, A. D.; Cappiello, M.; Mura, Umberto.; Barlocco, D. J. Med. Chem. 1996, 39, 4396-4405

- 2. Stevenson, T. M.; Crouse, B. A.; Thieu, T. V.; Gebreysus, C.; Finkelstein, B. L.; Sethuraman, M. R.; Dubas-Cordery, C. M.; Piotrowski, D. L. J. Heterocycl. Chem. 2005, 42, 427-435.
- 3. Kerdesky, F. A.; Leanna, M. R.; Zhang, J.; Li, W.; Lallaman, J. E.; Ji, J.; Morton, H. E. Org. Process Res. Dev. 2006, 10, 512-517.
- Chiou, G. C. Y. *Drugs Future* 1999, 24, 979–990.
 (a) Moos, W. H.; Humblet, C. C.; Sircar, I.; Rithner, C.; Weishaar, R. E.; Bristol, J. A.; McPhail, A. T. J. Med. Chem. 1987, 30, 1963-1972; (b) Sircar, I.; Duell, B. L.; Bobowski, G.; Bristol, J. A.; Evans, D. B. J. Med. Chem. 1985, 28, 1405-1413.
- 6. Gong, Y.; Barbay, J. K.; Byatkin, A. B.; Miskowski, T. A.; Kimball, E. S.; Prouty, S. M.; Fisher, M. C.; Santulli, R. J.; Schneider, C. R.; Wallace, N. H.; Ballentine, S. A.; Hageman, W. E.; Masucci, J. A.; Maryanoff, B. E.; Damiano, B. P.; Andrade-Gordon, P.; Hlasta, D. J.; Hornby, P. J.; He, W. J. Med. Chem. 2006, 49, 3402-3411.
- 7. (a) Mátyus, P.; Maes, B. U. W.; Riedl, Z.; Hajós, G.; Lemière, G. L. F.; Tapolcsányl, P.; Monsieurs, K.; Eliás, O.; Dommisse, R. A.; Krajsovszky, G. Synlett 2004, 7, 1123-1139; (b) Tapolcsányl, P.; Mátyus, P.; Maes, B. U. W. Targets Heterocycl. Syst. 2002, 6, 369-398.
- 8. (a) R'kyek, O.; Maes, B. U. W.; Jonckers, T. H. M.; Lemière, G. L. F.; Dommisse, R. A. Tetrahedron 2001, 57, 10009-10016; (b) Coelho, A.; Sotelo, E.; Novoa, H.; Peeters, O. M.; Blaton, N.; Raviňa, E. Tetrahedron Lett. 2004, 45, 3459-3463.
- 9. 4,5-Dihalo-3(2H)pyridazinones were normally synthesized from hydrazine or arylhydrazines and mucohalic acid (X = Cl or Br) in acetic acid medium.
- 10. Several issues were considered in our early study: (1) the stability of diazonium salt and its safety profile; (2) how to control the ratio of several reagents and how to simplify the separation; (3) will the process work without removing excess SnCl₂? (4) Is water the best solvent for this one-pot process?
- 11. (a) Treating chloropyridazinones with KF in DMSO at 100 °C gave 32-82% fluoropyridazinones, see Gaodeng Xuexiao Huaxue Xuebao, 1988, 9, 1083-1084; (b) Treatment of, 4,5-dichloro-3(2H)-pyridazinones with 47% HBr gave a mixture of 4,5-dibromo-3(H)-pyridazinone and 4-bromo-5-chloro-3(2H)-pyridazinone, see Yakugaku Zasshi, 1988, 108, 911-915.
- 12. SnCl₂ was still used in the preparation of dibromide since (1) $SnCl_2$ is much cheaper than $SnBr_2$; (2) the solubility of $SnBr_2$ in water is much lower; (3) when HBr was used as solvent, $[Br] \gg [Cl]$, therefore it will inhibit the halogen exchange.